Максимальный процент армирования колонны
Как армировать колонны: схемы, нормы и правила
В монолитном строительстве, колоннами называют железобетонные вертикальные протяженные элементы, предназначенные для восприятия и передачи нагрузки от вышележащих конструкций. Для того чтобы они смогли обеспечить одноэтажным и многоэтажным сооружениям необходимый уровень жесткости и прочности, по вертикали, их усиливают арматурным каркасом. Разберем, как правильно и чем выполнить армирование колонны, чтобы она выдержала все будущие нагрузки на сжатие, скручивание и изгиб.
Зачем армировать колонны?
Арматурный каркас увеличивает такие показатели бетонной колонны, как:
- Прочность.
- Сейсмостойкость.
- Устойчивость к появлению трещин.
- Долговечность.
На сколько, сильно увеличатся данные показатели, зависит от диаметра используемой арматуры и марки бетона. Так же армирование даёт возможность заливать колонны не только с простой формой поперечного сечения – квадратной и прямоугольной. Но и более сложной – двутавровой и круглой (сплошной и полой).
Материал для усиления колонн
Для армирования колонн используют арматуру следующих классов:
- В качестве рабочих продольных стержней применяют термомеханически упрочнённые стальные пруты периодического профиля класса А500С. Также допускается использование горячекатаных стержней класса А400.
- Для изготовления конструктивных элементов (хомутов, соединительных стержней), используется арматура с гладким профилем класса А240.
Технологические нормы по созданию армирующего каркаса
Для того чтобы правильно выполнить армирование монолитной колонны необходимо соблюдать следующие нормы по его устройству.
Диаметр арматуры
Минимальный диаметр стальных рабочих продольных стержней для сборных колонн должен быть равен не менее 16 мм. Для монолитных допускается применять арматуру диаметром 12 мм.
Рекомендуется, для создания армирующего каркаса колонны, использовать пруты одинаковой диаметра. Но допускается и применение двух разных, в этом случае стержни большего размера располагаются по углам колонны, а меньшего между ними по центру.
Минимальный и максимальный процент армирования колонны
Минимальный размер сечения арматуры для всех колонн разный. Определяется он расчетными действиями, учитываются все будущие нагрузки, которые будут действовать на колонну, временные, длительные и постоянные.
Максимальная площадь сечения рабочей продольной арматуры не рекомендуется делать более 5% площади поперечного сечения колонны. Так как в этом случае тяжело расположить стержни в пределах сечения.
Оптимальный процент армирования колонн находиться в пределах 0,4-3%. В местах стыковки это значение будет в 2 раза больше.
Пример расчета процента армирования колонны 400 на 400 мм, арматурой 16 диаметра – 4 шт.
- Находим площадь сечения колонны, 40*40=1600 см2.
- Считаем суммарную площадь поперечного сечения арматуры, 4*2,01=8,04 см2.
- Процент армирования равен, 8,04/(1600/100)=0,5025%.
Расположение продольных стержней
Максимально допустимое значение расстояния между осями продольных стержней не должно превышать 400 мм. Если расстояние более 400 мм, то следует между ними установить дополнительные стержни диаметром не менее 12 мм.
Рекомендуемое значение расстояния между стержнями в свету для сборных колонн рекомендуется делать не менее 30 мм, а для монолитных от 50 мм. В обоих случаях минимальное значение следует принимать не менее диаметра используемой арматуры.
Размер и расположение поперечных элементов
Размер поперечных стержней, зависит от наибольшего размера продольного прута в сечении колонны, а также от способа их соединения (вязка или сварка). Минимальный диаметр поперечных прутов указан в таблице ниже:
На размер шага расположения хомутов в колонне влияет класс арматуры, и ее показатели расчетного сопротивления сжатию Rас.
- Для Rа.с. 2 – шаг не более 50 см, а так же не больше 20 диаметров используемого прута при соединение методом сварки, а при вязке не более 15d.
- Для Rа.с. = 4500 кгс/см 2 и Rа.с. = 5000 кгс/см 2 – шаг не должен превышать 40 см. Для сварных каркасов не более 15 диаметров, а для вязаных 12. Для расчета берется размер наименьшего используемого продольного прута.
Если процент насыщения продольных стержней в колонне больше 3, то размер шага поперечной арматуры не должен превышать 30 см и не быть более 10 диаметров меньшего продольного элемента. Рекомендуется в данном случае хомуты крепить методом сварки.
Длина и правила стыковки прутов колонн
Длина арматуры для армирования монолитной железобетонной колонны берется такой, чтобы не было необходимости делать стык. Но если стык все же необходимо выполнить внахлест, без применения сварки, то лучшим вариантом расположения стыка будет в месте изменения сечения колонны. А для многоэтажных монолитных домов, лучший вариант расположения стыка, это уровень верха перекрытия.
Рекомендуемый размер нахлеста арматуры в колонне в сжатом состоянии, равен 30 диаметрам прута, при выполнении стыковки в разбежку. Но чаще всего стыковку выполняют без разбежки над перекрытием, в таком случае размер нахлеста рекомендуется делать в 2 раза больше, то есть 60 диаметров прута.
На схемах ниже приведены примеры выполнения стыковки продольной арматуры в монолитном домостроении.
Требования к защитному слою
Соблюдение требований по защитному слою бетона для арматуры колонны, одно из важнейших условий качественной железобетонной конструкции. Размер защитного слоя, зависит от диаметра арматуры и её назначения.
- Для продольных стержней размер защитного слоя должен быть больше 20 мм, но не менее диаметра арматуры. Например: если для армирования используется пруты толщиной 28 мм, то соответственно минимальный защитный слой – 28 мм.
- Для поперечного армирования колонны минимальный защитный слой бетона равен 15 мм, но так же, как и у продольного, не может быть менее диаметра стержня.
По моему опыту, чаще всего размер защитного слоя для колонн находится в пределах 3 – 4,5 см. Но если толщина защитного слоя, получилась более 50 мм в растянутой зоне сечения, то необходимо дополнительно устанавливать конструктивную арматуру в виде сеток.
Схемы армирующих каркасов
На схему расположения продольных и поперечных элементов армирования колонны (хомутов и соединительных стержней), влияет размер колонны, форма, количество арматуры используемых для её усиления, а также способ соединения элементов каркаса: при помощи сварки или вязальной проволоки.
Как видите при создании армирующего каркаса следует учесть немало факторов, для того чтобы получить качественную железобетонную колонну. Будьте внимательны и ответственно отнеситесь к процессу строительства и расчета. Если остались вопросы после изучения материала, задавайте их в комментариях.
Процент арматуры в железобетоне — каким должно быть оптимальное значение?
С целью выполнения армированием своего прямого предназначения, необходим специальный расчет усиления бетона, что соответствует минимальному и максимальному проценту. Эта величина играет важную роль в проектных расчетах. Ее малый показатель не дает права считать изделие усиленным до ЖБИ, а больший приведет к существенному снижению технических характеристик ж/б материала.
- Степень армирования
- Особенности расчетов
- Значение армирования
- Минимальный процент
- Максимальный коэффициент арматуры
- Сохранение прочности
- Защитный слой бетона
Степень армирования
Минимальная величина коэффициента армирования (0,05%) позволяет назвать изделие железобетонным.
Если металлические элементы поместить в бетон, но величина арматурной составляющей не будет соответствовать техническим требованиям ГОСТа, то это изделие относится к бетонным наименованиям с конструкционным укреплением и не допускается к эксплуатации. Для фундамента, колонн, несущих стен и балок степень армирования рассчитывается по формуле: К= (М1÷М2)x100; где
- М1 — вес стального каркаса;
- М2 — масса бетонного монолита.
Для создания арматурного каркаса предпочтительно используются прутья диаметром 12-14 мм.
Площадь сечения стержней обуславливает способность поддерживающего каркаса нести и распределять нагрузки. Чем больше диаметр прутьев, тем выше процент армирования и прочность сооружения. Обычно предпочитают стержни в 12—14 мм диаметром. Удельный показатель веса арматуры уменьшается с увеличением толщины бетонного слоя.
Особенности расчетов
В железобетоне используют только горячекатаную сталь высокого класса, так как она устойчива к коррозии и крепка. Чтобы сваренный металлический каркас, расположенный в бетоне, сделал свое дело, необходим точный расчет, позволяющий уточнить, сколько и какие материалы необходимы. Важность расчетов сложно переоценить. Они выполняются с привлечением технических формул, где учтены сопротивление используемых стройматериалов, соотношение предельно допустимых нагрузок к закладываемым и другие параметры. А также стандартные вычисления предусматривают тип фундамента, наличие дополнительных конструкционных элементов, марку бетона, несущие нагрузки. По окончании математической части все данные наносят на чертеж, где представлена схема армирования. Из проекта исполнители знают, сколько и какого вида стальных стержней нужно взять. А также стоит учесть в каком порядке их расположить и связать.
Значение армирования
Минимальный процент
Наименьшая степень усиления бетона арматурой, что расположена продольно, вычисляется соответственно площади сечения железобетонного объекта и составляет 0,05%. Меньший показатель говорит лишь о локальном укреплении бетонного раствора. Такое сооружение ненадежное и опасное, поскольку возможно его разрушение. Минимальный процент армирования зависит от типа и локализации действующих нагрузок (сжатие, растяжение) вне пределов рабочего бетонного сечения, между прутьями каркаса, и колеблется в пределах от 0,5 до 0,25% для каждой конкретной конструкции.
Максимальный коэффициент арматуры
Предельно допустимая доля стали для ж/б конструкций составляет 4% (в колоннах 5%). Тип стальных элементов и марка бетона влияния не имеют. Превышение максимальной величины приводит к снижению эксплуатационных характеристик изделия и возрастанию его веса, что усилит нагрузку вышерасположенных составляющих на нижние. Укрепляя бетон, важно обеспечить плотное обволакивание всей металлической решетки раствором без образования воздушных карманов.
Сохранение прочности
Бетон создает защиту стали от влияния факторов внешней среды (влаги, химических веществ), поэтому металл должен быть полностью укрыт раствором. Любые манипуляции с железобетонным объектом типа алмазного бурения, резки, отделения частей, образования сквозных тоннелей в стене приводят к значительному уменьшению потенциала прочности.
Все работы, нарушающие монолитность железобетонной конструкции, должны проводиться с учетом схемы расположения и пространственной структуры каркаса.
Защитный слой бетона
В таблице представлена зависимость толщины бетонного слоя от типа строительного элемента:
Наименование стройматериала | Ширина объекта, см | Слой бетона, см |
Несущая стена | Более 10 | 1,5 |
Стена | Менее 10 | 1 |
Ребро | 25 | 2 |
Балка | Менее 25 | 1,5 |
Колонна | 3 | |
Фундаментная балка |
Особое внимание следует уделить фундаментам монолитной структуры. Наличие цементной подушки оправдывает слой бетонной защиты в 3,5 см, без нее — 7 см. Сборный фундамент потребует слоя шириной 3 сантиметра. Чем больше толщина искусственного камня, тем прочнее арматуру рекомендуют использовать. Технические выкладки взяты из свода требований к бетонным и железобетонным конструкциям СНиП 2.03.01—84.
Параметры подбора армирования ЖБК в Лира-Сапр
Хотел бы обсудить корректность составленных пояснений к выбору тех или иных параметров подбора армирования в Лира-Сапр по СП 63.13330.2012 . Бывает, что не всегда вспоминается, что именно нужно вписывать, чтобы расчет прошел корректно.
· Для колонн – колонна рядовая, либо колонна первого этажа;
· Для пилонов (при моделировании их стержнем) – пилон;
· Для балок – балка;
· Для плит – плита;
· Для стен (работающие больше как диафрагма жесткости) – стена растяжение/сжатие;
· Для стен (работающие также и на изгиб, например пилоны при их моделировании пластинами) – оболочка.
· Для колонн, пилонов – симметричное;
· Для балок – несимметричное, либо симметричное/несимметричное при необходимости (наличие знакопеременных нагрузок).
Выбрать согласно опыту. Если неизвестно – статически неопределимая.
Минимальный процент армирования определяется по пункту 10.3.6:
· для изгибаемых конструкций – 0.1%;
· для растянутых конструкций – 0.1%;
· для внецентренно-сжатых конструкций при гибкости ≤ 17 (для прямоугольных сечений ≤ 5) — 0.1%;
· для внецентренно-сжатых конструкций при гибкости 17 Расстояние до центра тяжести арматуры (привязка арматуры)
Определяется в соответствии с величиной защитного слоя а. Защитный слой подбирается согласно пункту 10.3.1-10.3.4 и таблице 10.1. Ориентировочно, центр тяжести арматуры можно принять:
· для плит и стен – а + 1.5 см;
· для балок и колонн – а + 2.5 см.
Ширина раскрытия трещин
Определяется в соответствии с пунктом 8.2.6. Для обычных конструкций промышленно-гражданских сооружений – 0.3 мм при продолжительном действии нагрузки, 0.4 – при кратковременном. Для различных безнапорных конструкций хранения жидкостей (неопасных, например – воды) ширину раскрытия трещин можно принять 0.2 мм при продолжительном действии нагрузки, 0.3 мм при кратковременном.
Шаг арматурных стержней, мм / Диаметр арматурных стержней
Используется для расчета по второму предельному состоянию (в частности, по трещиностойкости). При отсутствии информации, можно принять следующие значения:
· Для колонн/пилонов/балок – диаметр арматурных стержней – 20 мм;
· Для плит/стен – шаг арматурных стержней – 200 мм.
· Для плит – не задается, равно 1.0;
· Для монолитных стен с жестким соединением на обоих концах – 0.7-0.8 (чем больше, тем больше запас);
· Для сборных стен с шарнирным соединением на обоих концах – 1.0, 0.8 – при жестком;
· Для балок – равно 0 (нулю);
· Для монолитных колонн с жестким соединением на обоих концах – 0.7-0.8 (чем больше, тем больше запас);
· Для сборных колонн с шарнирным соединением на обоих концах – 1.0, 0.8 – при жестком.
Коэффициент условия разрушения
Определяется согласно пункту 6.1.12 (б). Условно можно принять 0.9, если при прикидочных расчетах было определен коэффициент армирования сечения более 2%. Также, можно принять 0.9 в запас. По-умолчанию – 1.0.
Коэффициент условия бетонирования
Определяется согласно пункту 6.1.12 (в). Условно можно принять:
· Для монолитных плит и балок – 1.0;
· Для монолитных стен и колонн при их высоте более 1.5 м – 0.85;
· Для сборных конструкций – 1.0.
В целом, коэффициент принимается равным 0.85, при высоте выгрузки бетонной смеси в опалубку при бетонировании более 1.5 метра. Таким образом, учитывается снижение прочности бетона при расслаивании бетонной смеси.
Коэффициент условия замораживания-оттаивания
Определяется согласно пункту 6.1.12 (после Г). Если при бетонировании не происходит замораживание/оттаивание смеси коэффициент принимается 1.0. Иначе, коэффициент принимается по опыту, либо каким-либо иным обоснованием (аналитическим, лабораторным испытанием и т.д.).
Определяется согласно пункту 8.1.7. Величина случайного эксцентриситета принимается наибольшим из:
· L/600, где L – расстояние между точками закрепления конструкции;
· h/30, где h – высота/ширина габарита сечения конструкции;
Значения случайных эксцентриситетов для некоторых сечений внецентренно-сжатых конструкций:
· Свая сечением 300х300 мм (любой длины): 1.00 см вдоль Z и Y осей;
· Свая сечением 350х350 мм (любой длины): 1.17 см вдоль Z и Y осей;
· Свая сечением 400х400 мм (любой длины): 1.33 см вдоль Z и Y осей;
· Колонна сечением 400х400 мм (высотой до 8 м): 1.33 см вдоль Z и Y осей;
· Колонна сечением 500х500 мм (высотой до 10 м): 1.67 см вдоль Z и Y осей;
· Колонна сечением 600х600 мм (высотой до 12 м): 2.00 см вдоль Z и Y осей;
· Стена толщиной ≤ 300 мм (высотой до 6 м): 1.00 см вдоль Z и Y осей.
Выбирается согласно пункту 6.1.20 – 6.1.21. Для повышения точности расчета – трехлинейная.
Относительная влажность воздуха
Определяется согласно СП 131.13330 в соответствии с пунктом 6.1.14 и примечаний 1 таблиц 6.10, 6.12. Относительная влажность воздуха определяется как средняя месячная наиболее теплого месяца для района строительства, по столбцу 8 таблицы 4.1 СП 131.13330.
· Для Санкт-Петербурга – 72%;
Примечание: возможно для строительства в зимнее время относительную влажность следует определять как среднюю наиболее холодного месяца района, по столбцу 15 таблицы 3.1 СП 131.13330.
· Для Санкт-Петербурга — 86%;
Максимальный диаметр продольной арматуры
Используется только при расчете по трещиностойкости. Условно можно принять 28-32 мм.
Коэффициенты учета сейсмического воздействия
Если сейсмического воздействия нет, то оба коэффициента равны 1. Иначе, определяется по т.6 СП 14.13330.
Процент армирования конструкций из железобетона
Арматурный каркас является необходимой частью в железобетонных конструкциях. Цель его использования — усиление и повышение прочности бетонных изделий. Арматурный каркас изготавливается из стальных прутьев или готовой металлической сетки. Необходимое количество усиления рассчитывается с учетом возможных нагрузок и воздействий на изделие. Расчетная арматура называется рабочей. При укреплении в конструктивных или технологических целях производится монтажное армирование. Чаще используются оба типа для обеспечения более равномерного распределения усилий между отдельными элементами арматурного каркаса. Арматура выдерживает нагрузку от усадки, колебаний температур и прочих воздействий.
Армирование бетона
Прочность на излом, повышенная надежность являются основными характеристиками, которым наделяется железобетонная конструкция при армировании. Стальной каркас многократно усиливает выносливость материала, расширяя область его применения. Горячекатаная сталь используется для армирования в железобетоне. Она наделена максимальной стойкостью к негативным воздействиям и коррозии.
Сваренный скелет из арматуры размещается внутри бетона. Однако недостаточно просто поместить его туда. Чтобы армирование выполняло свое назначение, требуются специальный расчет усиления бетона, соответствующий минимальному и максимальному проценту.
Минимальный армирующий процент
Под предельно минимальным армирующим процентом принято понимать степень преобразования бетона в железобетон. Недостаточная величина этого параметра не дает права считать изделие усиленным до ЖБИ. Это будет простым упрочнением конструкционного типа. Площади сечения бетонного изделия учитываются в минимальном проценте усиления при использовании продольного армирования в обязательном порядке:
- Усиление прутьями будет соответствовать 0,05 процентам от площади разреза изделия из бетона. Это актуально для объектов с внецентренно изгибаемыми и растянутыми нагрузками, когда оказывается продольное давление за пределами действительной высоты.
- Армирование прутьями равно не менее 0,06 процентам, когда давление во внецентренно растянутых изделиях осуществляется на пространство между армирующими прутьями.
- Упрочнение будет составлять 0,1—0,25 процента, если железобетонные материалы усиливаются во внецентренно сжатых частях, то есть между арматурами.
При расположении продольного усиления по периметру сечения, то есть равномерно, степень армирования должна равняться величинам, вдвое большим указанных для всех перечисленных выше случаев. Это правило аналогично и для усиления центрально-растянутых изделий.
Максимальный армирующий процент
При армировании нельзя укреплять бетонную конструкцию слишком большим количеством прутьев. Это приведет к существенному ухудшению технических показателей железобетонного материала. ГОСТ предлагает определенные нормативы максимального процента армирования.
Максимально допустимая величина усиления, вне зависимости от марки бетона и типа арматуры, не должна превышать пяти процентов. Речь идет о расположении в разрез сечения изделия с колоннами. Для других изделий допускается максимально четыре процента. При заливке арматурного каркаса, бетонный раствор должен проходить сквозь каждый отдельный конструкционный элемент.
Защитный слой бетона
Для защиты арматуры от коррозии, влаги и прочих неблагоприятных внешний воздействий, бетон должен полностью покрывать стальной каркас. Толщина бетонного пласта над металлическим скелетом в монолитных стенах более 10 см должна составлять максимально 1,5 см. Для плит толщиной до 10 см величина слоя составляет 1 см. Если речь идет о 25-сантиметровых ребрах, слой бетона должен достигать 2 см. При армировании балок до 25 см пласт цементного раствора равен 1,5 см, но для балок в фундаментах — 3 см. Для колонн стандартных размеров следует заливать бетон слоем более 2 см.
Что касается фундаментов, то для монолитных конструкций с прослойкой из цемента требуемая толщина слоя над арматурным каркасом составляет 3,5 см. При обустройстве сборных основ — 3 см. Монолитные базы без подушки требуют 7-сантиметровый слой бетона над скелетом из арматуры. При использовании толстых защитных слоев бетона рекомендуется проводить дополнительное усиление. Для этого используется стальная проволока, вязанная в виде сетки.
При дальнейшей обработке железобетонных конструкций алмазными кругами важно учитывать расположение каждого армирующего элемента и структуру его скелета. Это особенно касается процессов сверления отверстий в железобетоне и его резки. Такая обработка материалов может снизить потенциальную прочность изделия. Когда железобетон демонтируется полностью, учет перечисленных выше требований не производится.
Заключение
Индивидуальное строительство немыслимо без использования бетонных растворов. Для повышения надежности и прочности возводимых конструкций армирование является важным условием.
При наличии базовых знаний и опытных помощников усиление бетонных объектов не составит труда. В этом деле важно выполнять требования и следовать правилам расположения арматуры. Только так можно получить гарантированно долговечные и надежные железобетонные конструкции.
О конструктивных требованиях СП 63.13330.2018
В прошлом году, в США и России, появились два новых нормативных документа по железобетону. В июне вступил в силу СП 63.13330.2018, а в июле, вышел ACI 318-2019. Американский нормативный документ не переиздавался с 2014 года, а с момента появления СП 63.13330.2012 прошло более семи лет и конечно, каждому конструктору, занимающемуся железобетоном, интересно, для чего понадобилось выпускать СП 63.13330.2018. О чем новом удалось узнать авторам. После внимательного прочтения выясняется, что в основных главах не так много новинок, но чувствуется явное тяготение разработчиков к достижениям науки советской эпохи, что не может не радовать, так как добавить в него могли что угодно. Возможно, авторы посчитали, что в существующем СП уже достаточно требований и методик для «классического железобетона» на обычных бетонах и дополнять их или изменять нет причин. Но тогда зачем его переиздавать, не лучше ли было выпустить обновленную версию Пособия к СП 63. В целом, если не учитывать добавление в пункте 5.1 о том, что расчеты по предельным состояниям второй группы следует производить на действие кратковременных и длительных нагрузок, без упоминания о постоянных нагрузках, которые тоже должны входить в основное сочетание, то остальные добавления можно считать более менее удачными. Например, в пункте 5.2.1, помимо необходимости расчета прочности по деформационной модели, добавили возможность расчета по предельным усилиям. Этот метод расчета хорошо себя зарекомендовал в советский период и используется сейчас во многих расчетных программах, поэтому его возвращение должны поприветствовать разработчики расчетных комплексов. Реализация полноценного расчета по нелинейной деформационной модели всей расчетной схемы требует большой переработки расчетных комплексов, а также привлечение соответствующих специалистов и времени, а главное — дополнительных финансовых затрат. В пункте 8.1.23 появилось полезное уточнение: «При статическом расчете конструкции по недеформированной схеме значения Mx и My определяют с учетом влияния прогибов согласно 8.1.2». В пункте 8.1.34 также добавили полезную поправку: «Значения коэффициента фn принимаются равными 1 — для изгибаемых конструкций без предварительного напряжения арматуры». Например, для изгибаемых конструкций, в которых не учитывается продольная сила коэффициент фn тоже теперь можно не учитывать. Пункт 8.1.46 дополнили следующим текстом: «Значение сосредоточенной силы следует принимать за вычетом сил, действующих в пределах основания пирамиды продавливания в противоположном направлении». Это допущение было описано в «Пособие по проектированию фундаментов на естественном основании под колонны зданий и сооружений (к СНиП 2.03.01-84 и СНиП 2.02.01-83)», в пункте 2.8: «Величина продавливающей силы F принимается равной величине продольной силы N, действующей на пирамиду продавливания, за вычетом величины реактивного давления грунта, приложенного к большему основанию пирамиды продавливания (считая до плоскости расположения растянутой арматуры)», и позволяло экономить арматуру в тех случаях, когда расчет на продавливание проходил с небольшим запасом. Этот пункт позволял немного увеличить запас и поперечную арматуру не устанавливать. Впрочем, сейчас в таких случаях принято устанавливать поперечную арматуру конструктивно (в связи с некачественным производством работ и возможными отклонениями толщины плит от проектных значений), поэтому данное уточнение поможет Заказчикам более аргументированно требовать обоснования расходов арматуры. В 10-й главе, в пункте 10.3.2 появилось требование из пункта 5.8 «Пособия к СП 52-101-2003» о необходимости установки конструктивной арматуры в виде сеток при толщине защитного слоя более 50 мм и отношении усилий M/N > 0.3h. Это требование позволяет предотвращать скалывание защитного слоя, поэтому добавление понятно и оправдано. О главе 10 и о конструктивных требованиях хочется упомянуть более подробно в связи с тем, что к этим требованиям часто относятся не так серьезно, как к расчетным, возможно из-за того, что не все понимают их важность, поэтому лишний раз обратить внимание на эти пункты будет полезно.
Почему конструктивные требования нужно обязательно выполнять? Во-первых, формально, глава 10 СП 63 указана в перечне национальных стандартов и сводов правил, в результате применения которых на обязательной основе обеспечивается соблюдение требований Федерального закона «Технический регламент о безопасности зданий и сооружений». Т. е. выполнение требований главы 10, наравне с другими обязательными главами СП 63, является условием, гарантирующим надежность и безопасность здания в течении всего срока службы. Во-вторых, выполнение конструктивных требований прямым и косвенным образом влияет на возможность выполнения расчетных требований, например, позволяет защищать арматуру от атмосферных (и других) воздействий и обеспечивать её совместную работу с бетоном. Чтобы лучше понять логику некоторых конструктивных требований можно вспомнить историю их появления и развития. Конструктивные требования, до появления в том виде, в каком они сейчас в СП, формировались на протяжении более чем 80 лет с момента выпуска ОСТ 90003-38 («Нормы и технические условия проектирования железобетонных конструкций»). Они менялись, дополнялись, сокращались по мере развития строительных технологий, технологий производства бетона, развития методик расчета и накопления данных испытаний. (Немного истории). Первые испытания железобетона, начались сразу после того, как в 1854 году в Англии и в 1867 году во Франции патенты на него получили Уильям Уилкинсон и Жозеф Монье. В 1861 году, во Франции, строитель Франсуа Куанье публикует первую брошюру о десятилетнем опыте применения железобетона под названием «Применение железобетона в строительном искусстве». А в 1884 году, в Германии, профессор механики И. Баушингер и инженер Г. А. Вайс выполнили первые масштабные исследования для изучения особенностей работы железобетонных конструкций. Кстати, Гюстав Вайс первым начал осознанно устанавливать арматуру в растянутую зону бетона. Например, Монье считал, что арматуру лучше устанавливать в середине сечения. Таким образом, конец 19 века стал периодом активного развития железобетона в Европе и США. В начале 20 века, 1903 году, английский инженер Эрнест Лесли Рэнсом, в Сиэтле, заканчивает строительство самого высокого на тот момент 15-ти этажного здания из железобетона. При том, что первые нормы по железобетону в США появились только в 1921 году (в Германии и Швеции в 1904 году, во Франции в 1906 году).
Не смотря на популярность за рубежом, в России, в это время, инженеры скептически относились к железобетону и не верили в его перспективы. В 1891 году выдающийся русский инженер-мостостроитель, ученый, Николай Аполлонович Белелюбский одним из первых осознал преимущества нового материала и начал многочисленные испытания железобетонных конструкций. Накопленные им данные позволили выявить очевидные плюсы железобетона и разрешить его использование в России, а в 1908 — 1911 годах выпустить первые нормативные документы по его использованию и расчету.
После окончания революции, в России, железобетон начали применять очень активно и появилась необходимость в экономии бетона и арматуры, т. е. в более глубоком изучении железобетона. В связи с этим начали создаваться первые научно-исследовательские институты. В результате, в 30-х годах, А. Ф. Лолейт и А. А. Гвоздев (при участии В. И. Мурашева) создают теорию предельного равновесия конструкций и метод расчета железобетонных элементов по стадии разрушения. Первые предложения по расчету железобетона по стадии разрушения сформулировал А. Ф. Лолейт и в 1932 году, на II Всесоюзной конференции по бетону и железобетону, изложил их в своем докладе: «О пересмотре теории железобетона». Однако, в связи с тем, что он в июне 1933 года ушел из жизни, опытные эксперименты, которые проводились под его руководством продолжил А. А. Гвоздев. Гвоздев также был одним из первых кто предложил выполнять расчет железобетона с учетом диаграмм деформирования бетона. (Окончательный переход на эту методику расчета произошел лишь в СНиП 52-01 «Железобетонные и бетонные конструкции»). В это же время В. З. Власов создает свою теорию расчета тонкостенных оболочек. Таким образом первые конструктивные требования к железобетонным конструкциям, в СССР, сформировались в 30-е годы и постепенно дополнялись с выходом обновлений нормативных документов. История развития некоторых из них описана далее.
Процент армирования
Первые требования к минимальному проценту армирования железобетонных конструкций появились в ОСТ 90003-38, в котором появился метод расчета по разрушающим усилиям. В книге Василия Ивановича Мурашова «Расчет железобетонных элементов по стадии разрушения», вышедшей в 1938 г., которая стала пособием к вышедшему ОСТ, о минимальном проценте армирования говорится следующее: «Минимальный процент насыщения сечения арматурой зависит от различных причин: величины усадочных напряжений, конструктивных соображений и т. д. В элементах, в которых часть сечения сжата, а часть растянута, минимальный процент растянутой арматуры должен быть согласно нормам не менее величин, приведенных в табл. 1.
Минимальные проценты армирования определены из условия, чтобы прочность железобетонного сечения была не ниже прочности того же сечения, рассчитанного как бетонное без учета арматуры. Для тавровых сечений минимальный процент армирования относится к площади сечения ребра…».
В вышедшем в 1946 году Н-3-46 («Нормы проектирования железобетонных конструкций (Н-3-46)», в таблице добавили информацию о напряжениях в арматуре, о количестве арматуры было написано следующее: «19. Сечение растянутой арматуры в процентах от площади расчетного сечения бетона для изгибаемых, внецентренно растянутых и внецентренно сжатых элементов, рассчитываемых в предположении, что при разрушении элемента имеет место текучесть арматуры, должно быть не менее указанного в табл. 4.
В центрально сжатых элементах, а также внецентренно сжатых, рассчитываемых в предположении, что при их разрушении текучести растянутой арматуры не происходит, сечение продольной арматуры должно быть не менее 0,5% от площади расчетного сечения бетона независимо от его марки».
Про максимальный процент армирования в книге Мурашева написано следующее: «При насыщении сечения колонны продольной арматурой не более 3%, как показали опыты, достаточно обычных хомутов, поставленных через 10-15 диаметров продольной арматуры. Если насыщение продольной арматурой превышает 3%, то для удержания мощных стержней от выпучивания обычных хомутов может оказаться недостаточно. В этом случае требуется взамен обычных хомутов ставить спиральную арматуру или приваренные хомуты. При этом каждый стержень продольной арматуры должен находиться в сгибе хомута. Таким образом для коротких колонн нормы не ограничивают предельный процент продольной арматуры, однако при высоких процентах насыщения требуют усиленного поперечного армирования».
Данное требование есть и в СП 63, в пункте 10.3.14: «Если содержание сжатой продольной арматуры, устанавливаемой у одной из граней элемента, более 1,5%, поперечную арматуру следует устанавливать с шагом не более 10d и не более 300 мм». Однако это требование не относится к случаям, когда арматура установлена не по расчету, а конструктивно с большим диаметром большей площади, чем требуется по расчету, так как при увеличении диаметра арматуры напряжения в ней уменьшаются и устойчивость увеличивается. Также уменьшаются и напряжения в бетоне. Нужно также иметь в виду, что при насыщении арматурой более 3% напряжения в бетоне рассчитываются с учетом вычета площади арматуры.
Максимальный процент армирования СП 63 не ограничивает, что не может не вызывать вопросов, так как в разных нормативных документах требования отличаются. Например, в пункте 8.3.5.1 СП 266 написано следующее: «Наибольший процент армирования колонн продольной жесткой и гибкой арматурой принимают не более 15%. Если при расчете конструкции в ней возникают изгибающие моменты только от случайных эксцентриситетов, то процент армирования принимают не более 25%». А в пункте 5.2.8 СП 430 написано: «…процент армирования в любом сечении (включая участки с нахлесточным соединением арматуры) — не более 10%». Так как СП 63, это обязательный нормативный документ, в нем должен быть указан критерий отнесения конструкции к железобетонной с гибкой или жестко арматурой. Будем надеяться, что со временем такой критерий появится.
Учет случайного эксцентриситета при расчете сжатых конструкций (п. 7.1.7, 8.1.7 СП 63.13330.2018)
Требование об учете случайного эксцентриситета при расчете сжатых железобетонных элементов, в советских нормах, впервые появились в СНиП II-21-75. Они подробно описаны в книге А. А. Гвоздева «Новое в проектировании бетонных и железобетонных конструкций» (Москва 1978 г.): «Центральное приложение усилия, вызывающее равномерное по сечению укорочение сжимаемого элемента трудно осуществить даже в лабораторных условиях; для этого приходится прибегать к пробным нагружениям испытуемого образца небольшим усилием по измерениям деформаций на гранях, оценивать эксцентриситет и его направление, разгружать образец и передвигать его в прессе для достижения более равномерной деформации. Такую операцию иногда повторяют несколько раз. Тем более нельзя рассчитывать, что кокой-либо элемент в реальной конструкции будет сжат центрально. Между тем даже небольшой эксцентриситет ощутимо снижает несущую способность сжатого элемента. Причиной возникновения случайного эксцентриситета могут быть: неоднородность свойств бетона по сечению, особенно в случае бетонирования элементов в горизонтальном положении, при значительной высоте сечения и подвижной консистенции бетона; начальная кривизна оси сжатого элемента или ее отклонение от вертикали; неучтенные горизонтальные силы и другие причины. Случайный эксцентриситет принимается… равным большему из трех значений: 1/600 свободной высоты сжатого элемента, 1/30 высоты сечения, 1 см. Эти величины заимствованы из рекомендаций Европейского комитета по бетону (ЕКБ) и Международной федерации преднапряженного железобетона (ФИП) и приняты также в нормах ряда стран. Согласно строительному кодексу Американского института бетона, случайный эксцентриситет принимается равным 1/10 высоты сечения сжатого элемента. В нормах зарубежных стран, учитывающих случайный эксцентриситет, он во всех случаях суммируется с эксцентриситетом, определенным расчетом. В наших… нормах это правило сохранено для статически определимых конструкций. Для статически неопределимых конструкций сделано послабление: если эксцентриситет, определенный из расчета, меньше случайного, то принимается случайный эксцентриситет; если же из расчета определен эксцентриситет, превышающий случайный, то последний не учитывается. Это обосновывается следующими соображениями. Наличие случайного эксцентриситета должно приводить к взаимному смещению концов сжатого стержня. Но в статически неопределимой конструкции такому смещению в той или иной мере препятствует связь этого стержня с другими элементами конструкции, что несколько смягчает влияние случайного эксцентриситета. Смягчение это существенно для сечений, где расчетный эксцентриситет значителен, и ничтожно либо отсутствует вовсе в сечениях, где он велик».
Расход арматуры на 1 м3 бетона фундамента: нормы армирования
При возведении крупных промышленных и жилых строительных объектов вопроса о том, сколько арматуры требуется на заливку 1 м3 бетона, не возникает: нормы ее расхода регулируются соответствующими ГОСТами (5781-82, 10884-94) и изначально закладываются в проект. В частном строительстве, где мало кто обращает внимание на требования нормативных документов, придерживаться норм расхода арматурных изделий все-таки следует, так как это позволит создать надежные бетонные конструкции, которые прослужат вам долгие годы. Для определения таких норм можно воспользоваться несложной методикой, позволяющей вычислить их с помощью несложных расчетов.
Арматурный каркас напрямую определяет эксплуатационные характеристики фундамента
Формула процента армирования железобетонных конструкций – соотношение бетона
В процессе длительной эксплуатации строительные конструкции подвергаются воздействию сжимающих и изгибающих нагрузок, а также крутящих моментов. Для усиления выносливости железобетона и расширения сферы его использования выполняется усиление бетона арматурой. В зависимости от массы каркаса, диаметра прутков в поперечном сечении и пропорции бетона изменяется коэффициент армирования железобетонных конструкций.
Разберемся, как вычисляется данный показатель согласно требованиям стандарта.
Для того, чтобы армирование выполняло свое назначение, необходимо расчитать усиление бетона, соответствующий минимальному проценту
Процент армирования колонны, балки, фундаментной основы или капитальных стен определяется следующим образом:
- масса металлического каркаса делится на вес бетонного монолита;
- полученное в результате деления значение умножается на 100.
Коэффициент армирования бетона – важный показатель, применяемый при выполнении различных видов прочностных расчетов. Удельный вес арматуры изменяется:
- при увеличении слоя бетона показатель армирования снижается;
- при использовании арматуры большого диаметра коэффициент возрастает.
Для определения армирующего показателя на подготовительном этапе выполняются прочностные расчеты, разрабатывается документация и делается чертеж армирования. При этом учитывается толщина бетонного массива, конструкция металлического каркаса и размер сечения прутков. Данная площадь определяет нагрузочную способность силовой решетки. При увеличении сортамента арматуры возрастает степень армирования и, соответственно, прочность бетонных конструкций. Целесообразно отдать предпочтение стержням диаметром 12–14 мм, обладающим повышенным запасом прочности.
Показатель армирования имеет предельные значения:
- минимальное, составляющее 0,05%. При удельном весе арматуры ниже указанного значения эксплуатация бетонных конструкций не допускается;
- максимальное, равное 5%. Превышение указанного показателя ведет к ухудшению эксплуатационных показателей железобетонного массива.
Соблюдение требований строительных норм и стандартов по степени армирования гарантирует надежность конструкций из железобетона. Остановимся более детально на предельной величине армирующего процента.
Чтобы гарантировать надежность конструкций из железобетона, необходимо соблюдать требования строительных норм
Сохранение прочности
Бетон создает защиту стали от влияния факторов внешней среды (влаги, химических веществ), поэтому металл должен быть полностью укрыт раствором. Любые манипуляции с железобетонным объектом типа алмазного бурения, резки, отделения частей, образования сквозных тоннелей в стене приводят к значительному уменьшению потенциала прочности.
Все работы, нарушающие монолитность железобетонной конструкции, должны проводиться с учетом схемы расположения и пространственной структуры каркаса.
Минимальный процент армирования в конструкциях из железобетона
Рассмотрим, что выражает минимальный процент армирования. Это предельно допустимое значение, ниже которого резко повышается вероятность разрушения строительных конструкций. При показателе ниже 0,05% изделия и конструкции нельзя называть железобетонными. Меньшее значение свидетельствует о локальном усилении бетона с помощью металлической арматуры.
В зависимости от особенностей приложения нагрузки минимальный показатель изменяется в следующих пределах:
- при величине коэффициента 0,05 конструкция способна воспринимать растяжение и сжатие при воздействии нагрузки за пределами рабочего сечения;
- минимальная степень армирования возрастает до 0,06% при воздействии нагрузок на слой бетона, расположенный между элементами арматурного каркаса;
- для строительных конструкций, подверженных внецентренному сжатию, минимальная концентрация стальной арматуры достигает 0,25%.
При выполнении усиления в продольной плоскости по контуру рабочего сечения коэффициент армирования вдвое превышает указанные значения.
Зачем нужно производить контроль использования арматуры?
Расчет количества арматуры необходим для прочности сооружения, а также сокращения затрат на строительство.
Расход арматуры на куб бетона позволяет определить требуемое количество материала — бетонной составляющей и каркаса. Если стальных элементов будет недостаточно, то конструкция получится непрочной. Если же прутьев закладывают намного больше, чем необходимо — это понесет дополнительные затраты, причем в этом нет необходимости. Поэтому количество арматуры в 1 м³ бетона рассчитывают, согласно 3-м основным сведениям о постройке:
- вид почвы;
- расчет арматурных прутков;
- нагрузка фундаментной плиты.
Чтобы точно понять какой Ø и шаг закладки необходим при возведении основания, необходимо провести вычисления или закладывать элементы с большим запасом по прочности и минимальным шагом.
Коэффициент армирования – предельное значение для монолитных фундаментов
Желая обеспечить повышенный запас прочности конструкций из железобетона, нецелесообразно превышать максимальный процент армирования.
Нецелесообразно превышать максимальный процент армирования, чтобы обеспечить повышенный запас прочности конструкций
Это приведет к негативным последствиям:
- ухудшению рабочих показателей конструкции;
- существенному увеличению веса изделий из железобетона.
Государственный стандарт регламентирует предельную величину уровня армирования, составляющую пять процентов. При изготовлении усиленных конструкций из бетона важно обеспечить проникновение бетона в глубь арматурного каркаса и не допустить появления воздушных полостей внутри бетона. Для армирования следует использовать горячекатаный пруток, обладающий повышенной прочностью.
Особенности расчетов
В железобетоне используют только горячекатаную сталь высокого класса, так как она устойчива к коррозии и крепка. Чтобы сваренный металлический каркас, расположенный в бетоне, сделал свое дело, необходим точный расчет, позволяющий уточнить, сколько и какие материалы необходимы. Важность расчетов сложно переоценить. Они выполняются с привлечением технических формул, где учтены сопротивление используемых стройматериалов, соотношение предельно допустимых нагрузок к закладываемым и другие параметры. А также стандартные вычисления предусматривают тип фундамента, наличие дополнительных конструкционных элементов, марку бетона, несущие нагрузки. По окончании математической части все данные наносят на чертеж, где представлена схема армирования. Из проекта исполнители знают, сколько и какого вида стальных стержней нужно взять. А также стоит учесть в каком порядке их расположить и связать.
Какова величина защитного слоя бетона
Для предотвращения коррозионного разрушения силового каркаса следует выдерживать фиксированное расстояние от стальной решетки до поверхности бетонного массива. Этот интервал называется защитным слоем.
Его величина для несущих стен и железобетонных панелей составляет:
- 1,5 см – для плит толщиной более 10 см;
- 1 см – при толщине бетонных стен менее 10 см.
Размер защитного слоя для ребер усиления и ригелей немного выше:
- 2 см – при толщине бетонного массива более 25 см;
- 1,5 см – при толщине бетона меньше указанного значения.
Важно соблюдать защитный слой для опорных колонн на уровне 2 см и выше, а также выдерживать фиксированный интервал от арматуры до поверхности бетона для фундаментных балок на уровне 3 см и более.
Величина защитного слоя различается для различных видов фундаментных оснований и составляет:
- 3 см – для сборных фундаментных конструкций из сборного железобетона;
- 3,5 см – для монолитных основ, выполненных без цементной подушки;
- 7 см – для цельных фундаментов, не имеющих демпфирующей подушки.
Строительные нормы и правила регламентируют величину защитного слоя для различных видов строительных конструкций.
Сколько арматуры понадобится на 1 кубометр бетона?
Количество арматуры на 1 м3 зависит от типа ЖБИ (плитный или ленточный фундамент, перемычки над проёмами, монолитное перекрытие) и условий его работы; класса металлопроката и марки бетона. Если речь идёт об основании, то ключевыми параметрами будут его вид, площадь здания, вес и нагрузки от его конструкций, грунт, сейсмоопасность в регионе и другие факторы, которые учитываются архитекторами при проектировании в каждом отдельном случае. Например, для ленты глубиной до 60 см каркас выполняют в двух уровнях, а при большем заглублении их количество увеличивают, располагая ряды с шагом 40 см.
Расчёт представляет собой сложную техническую задачу и по плечу только специализированной проектной организации. Он должен выполняться отдельно для различных типов ЖБ конструкций (балка, лента фундамента, колонна) и условий их работы. Например, для перекрытия средняя цифра расхода составляет около 110-120 кг/куб, а для колонн — до 350 кг на 1 м3.
Для количественной оценки пользуются коэффициентом армирования: μ = [Sa/(В∙Н)]∙100%, где:
- Sa — площадь поперечного сечения стержней;
- В — ширина изделия (плиты, ленты);
- Н — его высота.
Исходные данные
Для проведения грамотного расчета необходимо владеть следующей информацией:
- на фундаменте какого типа предполагается возвести здание;
- какую площадь займет монолит;
- фундамент какой толщины выдержит надземную часть;
- какой тип грунта будет играть роль основания дома;
- какая арматура (диаметр, класс) будет использоваться при возведении монолита.
При строительстве легкого деревянного домика и при сооружении плитного фундамента на грунтах с хорошей несущей способностью обычно используют арматуру диаметром не более 10 мм.
Слабые грунты или большой вес постройки вынуждают применять более мощные арматурные стержни – до 14-16 мм.
Перевод погонных метров в тонны
Чтобы перевести погонный метраж в килограммы или тонны нужно обладать информацией о том, сколько весит 1 метр данной металлопродукции определённого диаметра. Самые распространённые виды имеют следующие показатели:
- 16 – 1578.
- 14 – 1208.
- 12 – 888.
- 10 – 617.
- 8 – 395.
- 6 – 222.
Показатели массы элемента, повышающего прочность, для 1 м³:
- 12-14,4*888=12787,2 г (12,787 кг).
- 8-28,8*395=11376 г (11,376 кг).
- Итоговый вес – 12,787+11,376=24,163 килограмма (0,024 тонны).
Показатели массы металлоизделия для ленточного фундамента (из примера №2):
- 10-240*617=148080 г (148,08 кг).
- 6-300*222=66600 (66,6 м).
- Общий вес – 148,08+66,6=215,4 килограмма (0,216 т).
Рассчитать, сколько понадобится материалов для создания армирующей несущей конструкции любого фундамента не составит труда, если знать обозначенные выше принципы. Это нужно для того, чтобы приобрести достаточное количество стройматериалов и избежать лишних затрат.